Assessment of in vitro differentiation of bovine pancreatic tissue in insulin-expressing cells.

نویسندگان

  • Marina Figliuzzi
  • Federica Adobati
  • Roberta Cornolti
  • Paola Cassis
  • Giuseppe Remuzzi
  • Andrea Remuzzi
چکیده

CONTEXT Expansion and culture of beta cell progenitors in vitro may represent an alternative to the use of differentiated beta cells from donor pancreata. OBJECTIVE The aim of our study was to investigate to what extent exocrine or endocrine pancreatic cells can be differentiated in insulin-producing cells in vitro. SETTING Bovine exocrine tissue (n=4) and islets (n=4) were cultured in DMEM with serum. INTERVENTIONS After 7 days, the cells were trypsinized and cultured in the same medium for cell proliferation, or in DMEM/F-12 containing growth factors to induce cell differentiation. MAIN OUTCOME MEASURE Proliferating capacity after 4 weeks in culture. In addition, insulin expression was evaluated by RT-PCR and by immunohistochemical staining. RESULTS After 4 weeks of culture, cells from exocrine tissue showed a 69.5+/-10.0 fold increase, while cells from islets showed a 31.2+/-11.4 fold increase (P=0.059). In differentiating medium, monolayers from exocrine and islet tissue were organized into islet-like structures containing cells which stained positively for insulin. Morphometrical analysis and RT-PCR confirmed the presence of insulin in the cells at the protein and the mRNA level. CONCLUSIONS In our experimental conditions, cells from pancreatic tissue proliferated and differentiated in insulin-containing cells. However, the level of insulin as well as mRNA expression is only a small fraction of that shown by fresh islets. Only selective identification of cell precursors may allow efficient generation of insulin-producing cells in vitro.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pancreatic Differentiation of Sox 17 Knock-in Mouse Embryonic Stem Cells in Vitro

The way to overcome current limitations in the generation of glucose-responsive insulin-producing cells is selective enrichment of the number of definitive endoderm (DE) progenitor cells. Sox17 is the marker of mesendoderm and definitive endoderm. The aim of the present research was to study the potential of Sox17 knock-in CGR8 mouse embryonic stem (ES) cells to differentiate into insulin produ...

متن کامل

Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells into Insulin Producing Cells Using Minimal Differentiation Factors

Background & Aims: Type 1 diabetes, or insulin-dependent diabetes, is an autoimmune disease in which pancreatic beta cells are destroyed by the immune system. Hitherto, no definite treatment has been found for this condition. Mesenchymal stem cells (MSCs) are multipotent, self-renewing cells that have the ability to differentiate into mesodermal tissues. This ability has attracted the attention...

متن کامل

In-vitro Differentiation of Human Umbilical Cord Wharton’s Jelly Mesenchymal Stem Cells to Insulin-Producing Cells

  Background & Objective: Diabetes is a major chronic metabolic disease in the world. Islet transplantation is a way to treat diabetes. Unfortunately, this method is restricted due to graft rejection and lack of donor islets. Mesenchymal Stem Cells (MSCS) have the ability to differentiate into Insulin-Producing Cells (IPCs). In this study, Human Umbilical Mesenchymal Stem Cells (HUMSCS) were in...

متن کامل

Differentiation of Mesenchymal Stem Cell toward the Insulin-like Cells with Lentivirus Vector Mir-375

Background & Objective: Type1 diabetes is characterized by autoimmune destruction of pancreatic β cells, leading to reduced insulin secretion. Differentiation of mesenchymal stem cells (MSCs) into β-like cells offers new ways of diabetes treatment. MSCs can be insulated from the human umbilical cord tissue and differentiate into insulin-producing cells. Material & Methods: Human um...

متن کامل

بررسی القای تمایز سلول‌های بنیادی به سلول‌های بتای پانکراس به‌وسیله عصاره متانولی یونجه

Background and Objective: β cell replacement therapy by pancreatic islet transplantation has become a promising treatment for type 1 diabetes. Medicago sativa L (Lucerne) from leguminosae family is known to exhibit hypoglycaemic activity both in animal and human studies. Most of these studies were concentrated on the effects of plant extracts on fasting glucose levels. Until now no researches h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JOP : Journal of the pancreas

دوره 9 5  شماره 

صفحات  -

تاریخ انتشار 2008